Impact of Front Line Demonstration on Sesamum Crop in Lalitpur District of Bundelkhand Region

N K Yadav*, D Tiwari, N K Pandey, M Ahmed, Sarita Devi, A Dixit and A K Chauhan

Krishi Vigyan Kendra, Lalitpur,
Banda University of Agriculture and Technology, Banda (Uttar Pradesh)

ABSTRACT
The cluster front line demonstrations on Sesamum were conducted by Krishi Vigyan Kendra, Lalitpur during 2017-18 to 2018-19 during kharif season. All the 200 demonstrations on Sesamum were carried out on 80 ha by the active participation of farmers. Farmers were selected and in demonstration plots seed was treated with thiram fungicide @2g/kg seed. In improved package of practices, good quality seed, recommended seed rate @5 kg/ha, recommended NPK fertilizer (30:15:0) and sulphur 25 kg/ha, timely sowing, effective plant protection and manual weed management and monitoring the farmers field time to time during cropping season were demonstrated. The maximum yield was obtained under demonstrated plots 4.5 and 3.25q/ha during 2017-18 and 2018-19, respectively. The per cent increase in yield over farmers’ practices was 60.71 and 47.72 per cent during 2017-18 and 2018-19, respectively. The benefit to cost (B:C) ratio for demonstration was 2.9 and 3.4 and farmers’ plots were 2.1 and 2.5 during 2017-18 and 2018-19, respectively.

Key Words: B:C ratio, Bundelkhand, Front Line Demonstration, Lalitpur, Sesamum.

INTRODUCTION
Sesamum (Sesamum indicum L.) is the oldest indigenous oilseed crop cultivated in India. Sesamum or Gingelly is commonly known as Til and Tili in Bundelkhandi language. Sesamum seeds are rich in oil (40-50%), protein (20%), unsaturated fatty acids, vitamins, minerals folic acid used in baking, candy making and health care products. It is used in edible oil products and it also medicinal and cosmetic uses. The crop is grown in almost all parts of country. More than 85 per cent production of Sesamum is from West Bengal, Madhya Pradesh, Rajasthan, Uttar Pradesh, Gujarat, Andhra Pradesh and Telangana state. In Uttar Pradesh, major Sesamum growing districts are Jhansi, Hamirpur, Jaluan, Mahoba, Hardoi, Banda, Unnao, Lalitpur, Fatehpur, Sitapur, Shahjahanpur and Sonbhadra. The area, production and productivity of Sesamum in Lalitpur district are 6943 ha, 778 MT and 1.12 q/ha, respectively (Anon, 2017). The main reasons for low productivity of Sesamum are its rain fed cultivation in marginal and sub marginal lands under poor management and unavailability of high yielding varieties. An improved verities and scientific cultivation technologies are capable for increasing the productivity levels of Sesamum. In order to increase the area, production and productivity of Sesamum, cluster front line demonstrations were evaluated in the Bundelkhan region of Uttar Pradesh.

MATERIALS AND METHODS
Krishi Vigyan Kendra, Lalitpur conducted cluster front line demonstrations on Sesamum high yielding varieties namely Shekhar and Pragati at the farmers field of Gadhiya, Basatguwan, Bamhorikhadet, Ladwari Paron, Baruad, Pipriabansa of Lalitpur district during 2017-18 to 2018-19. The soil of demonstrated plots ranged from red series to black series soil. The district is divided into two agro-ecological situations (AESs) as AES-I is having red soil series as Rakar and Parwa with medium slope, AES-II black soil series as Mar and Kabar with slight to medium slope. In district

*Corresponding author’s E-mail:nitin_agril@rediffmail.com
Lalitpur, soil strata is rocky, terrain is undulating and slope ranges between (0.5 to 10%) and hillocks spreading here and there. Red soils originate from barren rock genesis granite and sometimes from sand sup ton. Black in contrast are formed partly in situ and partly transported with material like lime stone and trap.

For conducting cluster front line demonstration, farmers were selected on the basis of survey. The required inputs were provided to selected farmers and regular visits of scientist to the demonstrated field. Under demonstrated technology trainings, grouping meetings and field day were organized to increase awareness of technologies among the farmers. The sowing was done in first fortnight of July during all trial years. In demonstration plots seed was treated with thiram fungicide @2g/kg seed. In improved package of practices, good quality seed, recommended seed rate @5 kg/ha, recommended NPK fertilizer (30:15:0) and 25 kg sulphur/ha, timely sowing, effective plant protection and manual weed management and monitoring the farmers field time to time during cropping season were demonstrated. The yield data were recorded from demonstrated plots as well as farmers’ practices plots. Cost of cultivation, gross return, net return and B:C ratio were computed and analyzed. Crop yield was recorded and gross return calculated on the basis of market value of Sesamum. Further technology index, technology gap extension gap, and B:C ratio calculated using the following formula as given by Samui et al. (2000).

Technology index = Potential yield - Demonstration yield/potential yield x 100
Technology gap = Potential yield - Demonstration yield
Extension gap = Demonstration yield - Yield under farmers’ practices
B:C = Net income (Rs./ha) / Cost of cultivation (Rs./ha)

RESULTS AND DISCUSSION

Results of cluster front line demonstrations conducted 2017-18 and 2018-19 in different villages of Lalitpur district comprised of use of high yielding variety, line sowing, judicious use of fertilizers and management of insect pests and diseases showed that the maximum yield was obtained under demonstrated plots 4.5 and 3.25 q/ ha during 2017-18 and 2018-19, respectively. An intensification in yield by using technical interventions in FLDs plots reported by Patil et al. (2019) in oilseed. The per cent increase in yield over farmers’ practices were 60.71 and 47.72 per cent during 2017-18 and 2018-19, respectively. Similar results also have been reported by Teggelli et al. (2018) and choudhary and Suri (2014) in Sesamum. The technology gap was
Impact of Front Line Demonstration on Sesamum

Table 2. Grain Yield performance of cluster frontline demonstration on Sesamum.

<table>
<thead>
<tr>
<th>Variety & year</th>
<th>Area</th>
<th>No. of farmers</th>
<th>Yield (q/ha)</th>
<th>Per cent increase over farmers practices</th>
<th>Technology gap (q/ha)</th>
<th>Extension gap (q/ha)</th>
<th>Technology Index (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Potential</td>
<td>Recommended Practices</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| | | | F arm-
| | | | er-
| | | | s Prac-
| | | | tices | | | | | | |
| Shekhar | 40 | 100 | 7.0 | 4.5 | 2.8 | 60.71 | 2.5 | 1.7 | 35.71 |
| Pragati | 40 | 100 | 7.5 | 3.25 | 2.2 | 47.72 | 4.25 | 1.05 | 56.67 |

Table 3. Economic performance of cluster frontline demonstration on Sesamum.

<table>
<thead>
<tr>
<th>Years</th>
<th>Yield (q/ha)</th>
<th>Economics of demonstration plot (Rs./ha)</th>
<th>Economics of Farmers plot (Rs./ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Demo Check</td>
<td>Gross Cost</td>
<td>Gross Return</td>
</tr>
<tr>
<td>2017-18</td>
<td>4.5 2.8</td>
<td>11000</td>
<td>31500</td>
</tr>
<tr>
<td>2018-19</td>
<td>3.25 2.2</td>
<td>12450</td>
<td>42250</td>
</tr>
</tbody>
</table>

found to be 2.5 and 4.25 while extension gap was recorded 1.7 and 1.05 during 2017-18 and 2018-19, respectively. These results were in conformity with findings of Anand Naik et al (2016) and Singh et al (2018). The technology gap was observed due to high rainfall and soil fertility status. These results were in conformity with findings of Sagar and Chandra (2004) in Sesamum.

Yield of Sesamum varied in different years, which might be due to the rainfall, pests attacks and change in soil types. The data (Table 3) indicated that the gross returns of demonstration plot were Rs. 31,500/- and 42,250/- and for farmers’ plot Rs 19,600/- and 28,600/- during 2017-18 and 2018-19, respectively. B:C ratio for demonstration 2.9 and 3.4 and farmers plots were 2.1and 2.5 during 2017-18 and 2018-19, respectively. Similar results also have been reported by Meena et al (2018) and Singh et al (2018). Higher net returns in demonstration plots as compared to farmer practices. Similar results also reported by Sandhu and Dhaliwal (2019) in rapeseed.

CONCLUSION

It can be concluded that newly introduced variety of Sesamum along with improved package of practices performed well in the Lalitpur district of Bundelkhand region and front line demonstrations on Sesamum at farmers’ field revealed that adoption of improved technologies significantly increased yield and net returns to the farmers.
REFERENCES

Pushpa R and Senthilkumar P (2003). Studies on the combining ability in Sesamum (S. indicum L.) paper presented in the national seminar on Advances in genetics and plant breeding-Impact of DNA revolution, October 30-31, University of Agricultural Sciences, Dharwad, Karnataka, India.

Received on 28/01/2020 Accepted on 15/04/2020