INTRODUCTION

Freshwater ecosystems play a major role in regulating earth’s climate with high socio-economic and ecological values as well as a crucial life giving resource for humanity. Phytoplankton communities are the part of pond microbial community forms essential component of aquaculture system. Most water quality problems in aquaculture ponds are the result of unmanaged growth of phytoplankton community dominated by noxious species of Cyanobacteria (Smith, 1991). Cyanobacterial blooms have become common phenomenon in ponds, lakes and reservoirs (Jewel, 2003). Cyanobacterial blooms in fresh water usually consist of both toxin and non toxin producing species (Baker and Humpage, 1994). It can rapidly overtake an aquaculture pond and give to unstable conditions. Cyanobacteria blooms lead to oxygen depletion in water leads to mass mortality of fishes in freshwater system (John, 2008). Factors include intensity of light, temperature, nutrient availability, episodic hydrological events, bio-physiological and chemical characteristics and ecosystem structure are the main cause of cyanobacterial bloom (Moore et al, 2008). A critical time during bloom condition occurs when dense cell masses decompose naturally and this decomposed products plus toxic cellular materials released into the water when the cells lyses may cause death or illness of mammals, birds and fishes and may also reduce water quality for animal (including human) and recreational purpose (Plamer, 1964; Schwimmer and Schwimmer, 1964; Collins, 1978). Several toxins produced by cyanobacteria are extremely toxic to warm blooded animals but there are little documentation of importance of cyanobacterial toxin in freshwater ponds is available. The objective of the study was to give base line information about the cause of fish mortality occurred in a fresh water pond during summer period.
MATERIALS AND METHODS

Udayathumvathil temple is a pilgrim centre of Panangad, Kochi, Kerala, India. It is the worship centre for Hindus having ritual and sacred values. Mass mortality of fishes observed in the study area (Fig. 1) includes Silvercarp (Hypophthalmichthys molitrix), Catla (Catla catla), Common carp (Cyprinus carpio) were observed on 27th May 2019. Water samples were collected for the analysis of physico-chemical factors such as temperature, pH, Dissolved Oxygen, Nitrates, Nitrites, Phosphate and Ammonia following the Standard method of APHA (1998). Identification of phytoplankton was done with the Standard books (Prescott, 1962, 1978; Desikachary, 1959; Turner, 1982). Phytoplankton samples were taken in Sedgwick rafter cell counting chamber and the results are expressed as number of cells per ml of sample. Graphical representation of phytoplankton abundance and cluster diagram was done using PRIMER v7 software.

RESULTS AND DISCUSSION

Cyanobacteria constituted a greater part of phytoplanktonic biomass during summer period in most of the fish ponds (Sevrin and Pletikosic, 1990). During the present study, three species of Cyanobacteria namely Aphanocapsa sp., Microcystis sp., Anabaena sp. and one species of family Chlorophyceae namely Pediastrum sp. were dominated as per their cell density (Fig. 2). Some of the microalgal species belonged to genera Microcystis, Anabaena, Planktothrix, Aphanizomenon and Cylindrospermopsis. Gas vesicles provide buoyancy and vertical movement through water column and dominate over other pelagic microalgae for sunlight and nutrients leads to harmful effect to the ecosystem (Oliver and Walsby, 1984). It has been found that Aphanocapsa sp. and Microcystis sp. were dominant compared to other microalgal species. The microscopic study exposed that the cyanobacterial cell density was 2.74×10^5 cell/ml, constitute 98.25 per cent of total phytoplankton abundance (2.94×10^5 cells ml$^{-1}$). The cell density of Aphanocapsa sp. and Microcystis sp. were 1.31×10^5 and 7.2×10^4 cells/ml, respectively which contributed 60.91 and 33.98% of total cyanobacterial abundance. Blue green algae played a major role in fish culture ponds, not only because of their prolific development, but also due to their effect on the environment and other aquatic organisms. In this study, water temperature, pH and DO observed at two stations varies from 28-29°C, 7.1-7.5 and 2.03 to 3.7 mg/l, respectively. Robarts and Zohary (1987) reported that water temperature of 25°C or above are favourable for the growth of Anabaena, Aphanizomenon, Oscillatoria and Microcystis. The increase in water temperature indirectly promoted better growth of cyanobacteria. The level of ammonia concentration in two stations (0.9 and 1.5 mg/l) was higher than desired level showed an indication of fish mortality. Nitrate and phosphate concentration estimated a higher concentration that desired level during the sampling period (Fig 3). Among the abiotic factors, nutrients including inorganic nitrogen and phosphorus, temperature, light intensity hydrodynamic parameters of water body were the most important factors in the proliferation of cyanobacteria (Gobler et al, 2016). Phosphorus was the limiting nutrient in freshwater ecosystem and high concentration of phosphorus correlate to the occurrence of cyanobacterial blooms worldwide. Cluster diagram indicating that class Cyanophyceae was dominating with less similarity in terms of abundance compared to other classes (Fig. 4).
Mortality of fish in the studied pond may be associated with the bloom of *Aphanocapsa* sp. and *Microcystis* sp. The presence of higher density of Cyanobacterial cells in both the stations (Fig. 5) resulted in clogging of gills and leading to mortality of fishes. The production of potent toxins by *Aphanocapsa* and *Microcystis* which may be the cause of fish mortality. Sustaining evidences can also be drawn from other studies such as Collins (1978) who suggested that critical time bloom conditions occurred when dense cell mass of cyanobacteria decomposed naturally and this decomposed products plus toxic cellular materials released into the water during cell lysis might have caused death of fishes. A study conducted by Yamamoto and Nakahare (2009) elucidated the factor that trigger *Microcystis* bloom formation in a pond in Kyoto, Japan. A study by Vijayarani et al (2016) reported bloom formation of *Chrococcus turgidus*, *Oscillatoria limosa*, *Microcystis aeruginosa* and *Anabaena circularius* indicating organic pollution in a temple pond in Kanyakumari. Presence of pollution tolerant algae like *Melosira*, *Oscillatoria*, *Pediastrum* and *Scenedesmus* has been considered as indicative of enriched waters, thus providing evidence of pollution of water (Tessy and Sreekumar, 2008; Paul and Anu, 2016). The runoff water increased the nutrient level of the pond water and provided a favorable condition for the Cyanobacterial bloom. Phytoplankton responds quickly to environmental changes and was used to assess the ecological status of water body. Phytoplankton diversity and successions in small man-made ponds were largely ignored.
CONCLUSION
Cyanobacteria can be considered highly undesirable to fish culture pond. The cause of fish mortality in the present study may be caused due to the following reasons i.e. depletion of oxygen due to blue green algal blooms, runoff water increased nutrient levels of the pond, toxin secreted from the cells, the fish get intoxicated by bacteria associated with Cyanobacteria. The methods to control cyanobacterial blooms include maintain N: P at a level of 5 or above which facilitate growth of Chlorophyceae and reduce the number of cyanobacteria in the ponds or by installing aerators in the ponds to break vertical stratification of water and improve dissolved oxygen concentration make unfavorable to blue green algal growth.

ACKNOWLEDGEMENT
Authors are grateful to the Head of the Department, Ocean Science and Technology, KUFOS for all laboratory facilities and support during the study period.

REFERENCES

Received on 20/06/2020 Accepted on 18/08/2020